Internal Elastic Strains of AZ31B Plate during Unloading at Twinning-Active Region

Author:

He Qichang1,Zhou Xiangyu1,Zhang Xiaodan1,Liu Chuhao1,Wang Huamiao1ORCID

Affiliation:

1. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

Magnesium alloys, being the lightest structural metals, have garnered significant attention in various fields. The characterization of inelastic behavior has been extensively investigated by researchers due to its impact on structural component performance. However, the occurrence of twinning in the absence of any applied driving force during unloading has lacked reasonable explanations. Moreover, the influence of deformation mechanisms other than twinning on inelastic behavior remains unclear. In this study, uniaxial tension and compression tests were conducted on hot-rolled magnesium alloy plates, and neutron diffraction experiments were employed to characterize the evolution of macroscopic mechanical response and microscopic mechanisms. Additionally, a twinning and detwinning (TDT) model based on the elastic visco-plastic self-consistent (EVPSC) model has been proposed, incorporating back stress to describe the deformation behavior during stress relaxation. This approach provides a comprehensive understanding of the inelastic behavior of magnesium alloys from multiple perspectives and captures the influence of microscale mechanisms. A thorough understanding of the inelastic behavior of magnesium alloys and a reasonable explanation for the occurrence of twinning under zero-stress conditions offer valuable insights for the precise design of magnesium alloy structures.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3