Two-Scale Computational Analysis of Deformation and Fracture in an Al-Si Composite Material Fabricated by Electron Beam Wire-Feed Additive Manufacturing

Author:

Balokhonov Ruslan1ORCID,Zemlianov Aleksandr1,Utyaganova Veronika1,Gatiyatullina Diana12,Romanova Varvara1

Affiliation:

1. Institute of Strength Physics and Material Science, Russian Academy of Sciences, 634055 Tomsk, Russia

2. Department of Solid Mechanics, Faculty of Physics and Engineering, National Research Tomsk State University, 634050 Tomsk, Russia

Abstract

Numerical simulation of deformation and fracture of an AlSi12% alloy additively fabricated by layer-by-layer electron beam melting of a wire is carried out. The microstructure of the alloy is studied by scanning and transmission electron microscopy at different resolutions. The experimental study at a length scale of several dozens of microns reveals a dendritic structure, which can be treated as a composite material consisting of aluminum arms separated by a eutectic network. The volume fraction of dendrites varies with the distance from the base plate in the build direction. The eutectics can also be thought of as a composite with an aluminum matrix reinforced by silicon particles at a scale of a few microns. Particles of different shapes are nearly equally spaced in the matrix. The eutectic and dendritic structures are taken into account explicitly in the calculations. The dynamic boundary-value problems are solved by ABAQUS/Explicit. The isotropic elastic-plastic and elastic models are used to simulate the response of aluminum and silicon. The fracture model includes a maximum distortion energy criterion formulated for the particle and matrix materials in terms of the equivalent stress and plastic strain. A two-scale approach is proposed to investigate deformation and fracture of the AlSi12% alloy. On the eutectic scale, the thermomechanical behavior of the Al matrix-silicon particle two-phase composite is simulated to obtain the homogenized properties of the eutectic composite material, which is then used at a higher scale to investigate the deformation and fracture of a two-phase dendritic structure. Residual stresses formed during cooling of the additively manufactured material were found to decrease the strength of the composite, while the strength increases with the volume fraction of dendrites.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3