Microstructure and Properties of Nonlinear Lap Joint of 6061 Aluminum Alloy by Friction Stir Welding

Author:

Qu Laipeng1,Ma Ning12,Xiao Xiao12,Zhang Keke12,Li Huijun3

Affiliation:

1. School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China

2. Provincial and Ministerial Co-Construction of Collaborative Innovation Center for Non-ferrous Metal New Materials and Advanced Processing Technology, Luoyang 471023, China

3. School of Mechanical, Materials, and Mechatronics Engineering, Faculty of Engineering and Information Sciences, University of Wollongong, Northfield Ave, Wollongong, NSW 2500, Australia

Abstract

The microstructure and properties of non-linear friction stir welded lap joints of the AA6061-T6 aluminum alloy were investigated, with a particular focus on the influence of corner curvature on the formability and mechanical properties of the joints. The research results indicate that for the 6061-T6 aluminum alloy lap joint friction stir welding with a smaller radius (R < 7 mm), there is a more severe accumulation of welding material. When the radius exceeds 7 mm, good macroscopic joint formation can be achieved. Various regions at the joint corners are composed of α-Al and intermetallic precipitations β phases. The microstructure of the heat-affected zone (HAZ) appeared relatively coarse, the weld nugget zone (WNZ) had the finest grain, and partial dissolution of the β phase occurred. The grain size in the middle WNZ at the corner was larger than at the ends, and the grain size on the inner side of the corner was larger than on the outer side. The hardness distribution of the joint exhibited a “W” shape, with the lowest hardness in the inner HAZ. When R ≤ 7, with an increase in R, the shear strength of the friction stir welded joints increased, and then the change became relatively small. The maximum shear strength of the joint was 101.32 ± 6.89 MPa at R = 7, and the fracture mode was primarily a ductile mixed fracture.

Funder

Major Project for Science and Technology of Luoyang City, China

Joint Foundation for Science and Technology Research and Development Plan of Henan Province, China

Frontier Exploration Project of Longmen Laboratory in Henan Province, China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3