Numerical Simulation of Thermal Field and Performance Study on H13 Die Steel-Based Wire Arc Additive Manufacturing

Author:

Zhu Yu12,Chen Jufang12,Li Xiaoping12

Affiliation:

1. School of Mechanical Engineering, Jiangsu University of Technology, Changzhou 213001, China

2. Key Laboratory of Advanced Materials Design and Additive Manufacturing of Jiangsu Province, Jiangsu University of Technology, Changzhou 213001, China

Abstract

In order to explore the relationship between welding thermal cycles and the thermal field during the repair process of dies, a numerical simulation software (SYSWELD) was employed to construct a thermo-mechanical coupled model. The influence of various inter-layer cooling times was investigated on heat accumulation, residual stress, and deformation of the repaired component. The results showed that the numerical simulation results agreed well with experimental data. The temperature within the cladding layer gradually rose as the number of weld beads increased, leading to a more pronounced accumulation of heat. The residual stress exhibited a double-peak profile, where the deformation of the repaired component was large at both ends but small in the middle. The less heat was accumulated in the cladding layer with a prolonged cooling time. Meanwhile, the residual stress and deformation in the repaired component experienced a gradual decrease in magnitude. The numerical simulation results demonstrated that the microstructure of the repaired component predominantly consisted of martensite and residual austenite at the optimal cooling time (300 s). Furthermore, the microhardness and wear resistance of the cladding zone significantly surpassed those of the substrate. In conclusion, this study suggested the prolonged cooling time mitigated heat accumulation, residual stress, and deformation in repaired components, which provided a new direction for future research on the die steel repairments.

Funder

Postgraduate Research & Practice Innovation Program of Jiangsu Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3