Effects of Alloying Elements on the Dissolution and Precipitation Behaviour of Fe in Mg-Al Alloy Melts

Author:

Jiang Shiyu1,Yang Li1,Yuan Yuan123ORCID,Zhang Ligang2,Wang Jun1,Chen Tao1,Tang Aitao1,Ma Lifeng4,Pan Fusheng13

Affiliation:

1. National Engineering Research Center for Magnesium Alloys, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China

2. School of Materials Science and Engineering, Central South University, Changsha 410083, China

3. International Joint Laboratory for Light Alloys (Ministry of Education), Chongqing University, Chongqing 400044, China

4. Heavy Machinery Engineering Research Center of the Ministry Education, Taiyuan University of Science and Technology, Taiyuan 030024, China

Abstract

It is necessary to strictly control the iron (Fe) impurity in Mg-Al alloys to guarantee good corrosion resistance and mechanical properties. In this work, the effects of alloying elements and temperatures on the solubilities of Fe in the Mg-Al-based alloy melts (Mg-rich liquid phases) at 963–1033 K were studied by combining the in situ sampling method for the high precision solution values and the multiple regression numerical analysis method for the feature analysis. The solubilities of Fe in Mg-xAl (x = 1 and 3 wt.%) alloy melts could be significantly reduced by adding the yttrium (Y) or manganese (Mn) elements. However, the solubilities of Fe in Mg alloy melts were not in a monotonous relationship with the contents of the alloying elements in the Mg alloys. For the addition of Mn or Y, the lowest solubilities of Fe presented in the Mg-rich liquid phases were for the Mg-xAl alloys with the addition of 2 wt.% Mn or 1 wt.% Y, respectively. Additionally, the Fe-containing precipitations in the related systems were analysed and the Fe was mainly combined with Mn or Y and precipitated, which contributed to the removal of Fe from the Mg melt. The present study provides fundamental thermodynamic information regarding Mg-Al-Fe based systems and the design principle for the removal of Fe in Mg alloys.

Funder

National Natural Science Foundation of China

Scientific Research Foundation for the Returned Chinese Scholars of Chongqing Human Resources and Social Security Bureau

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3