Numerical Investigation of Fatigue Crack Propagation Behaviour of 550E High-Performance Steel

Author:

Xiao Linfa12,Lin Heng3,Wang Yongxiang1,Yang Yiming14,Chen Huapeng1

Affiliation:

1. State Key Laboratory of Performance Monitoring and Protecting of Rail Transit Infrastructure, East China Jiaotong University, Nanchang 330013, China

2. Key Laboratory of Safety Control of Bridge Engineering, Ministry of Education, Changsha University of Science & Technology, Changsha 410114, China

3. CCCC Highway Consultants Co., Ltd., Beijing 100010, China

4. School of Civil Engineering, Hunan City University, Yiyang 413000, China

Abstract

The fatigue crack propagation behaviour of Q550E high-performance steel (HPS) is studied in this paper. Static tensile testing and fatigue crack propagation testing were carried out, and the results were compared with those of Q235. Finite element models were developed and verified against the experimental results. The impacts of the initial crack angle, crack depth ratio, stress ratio, thickness, and corrosion pitting on the fatigue crack propagation behaviour of the HPS were analysed. The results show that the fatigue life of Q550 was reduced by 18% due to the corrosion pitting, but it did not change the crack propagation path. When the stress intensity factor is higher than a certain value, the fatigue performance of Q235 is better than that of Q550E. The initial crack angle of 52.5° is the critical angle of the crack stress intensity factor. The steel tends to fracture as the crack depth ratio increases, and more attention should be paid to the effective crack length in engineering practice. An increasing stress ratio leads to a smaller stress intensity factor, and the thickness affects the stress intensity factor in the later stage. The crack stress intensity factor around the corrosion pits gradually decreases along the thickness direction, and the crack tips around the corrosion pits tend to reach the yield state initially, accelerating the fatigue fracture of the specimen and ultimately leading to a decrease in fatigue life.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Natural Science Foundation of Jiangxi Province

Open Fund of Hunan Province University Key Laboratory of Bridge Engineering

Open Project of State Key Laboratory of Performance Monitoring and Protecting of Rail Transit Infrastructure

Science and Technology Innovation Program of Hunan Province

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3