Particle Stimulated Nucleation Effect for Al-Mg-Zr-Sc Alloys with Ni Addition during Multidirectional Forging

Author:

Kishchik Mikhail S.1,Mochugovskiy Andrey G.1ORCID,Cuda Maxence2,Kishchik Anna A.1,Mikhaylovskaya Anastasia V.1

Affiliation:

1. Department of Physical Metallurgy of Non-Ferrous Metals, National University of Science and Technology “MISiS”, Leninsky Prospekt 4, 119049 Moscow, Russia

2. National School of Engineers of Saint-Étienne, University of Saint-Étienne, 58, Rue Jean Parot, 42023 Saint-Étienne, France

Abstract

The study aims to investigate the influence of fraction of coarse undeformed particles on the microstructure evolution and mechanical properties of alloys processed by isothermal multidirectional forging (MDF). For this purpose, Al-Mg-Ni-Sc-Zr-based alloys with different Ni concentrations and a fraction of Al3Ni particles of solidification origin phase were subjected to MDF at 350 °C. Precipitates of the L12-structured Al3(Sc,Zr) phase retained their structure, morphology, and size after MDF and were coherent with the aluminum matrix. The Al3Ni phase particles stimulated the nucleation of recrystallized grains and contributed significantly to the formation of an ultrafine-grained structure. The uniformity of the grain structure increased, and the average grain size decreased with an increase in the fraction of Al3Ni particles. A fine-grained structure with a mean grain size of 2.4–3.4 µm was observed after MDF with a cumulative strain of 12. The results demonstrate that a bimodal particles size distribution with a volume fraction of nanoscale f~0.1% and microscale f~8% particles provided for the formation of a homogenous fine-grained structure after MDF and improved the mechanical properties.

Funder

Russian Science Foundation

MISIS University

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3