Numerical Simulation and Surface Properties of 42CrMo Steel Treated by Plasma Nitriding and Laser Quenching

Author:

Zhang Yuhang1,Wang Yixue1

Affiliation:

1. School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China

Abstract

In this study, we investigated the nitriding and laser quenching composite modified layers of 42CrMo steel. MATLAB was used to fit the nitrogen concentration distribution during nitriding, and the laser temperature field was fitted using ABAQUS finite element simulation software. Two groups of simulation results were integrated to fit the modified layer depth under different processes, and the nitriding and laser quenching experimental results were compared with the simulation results, which indicated that the simulation results agreed well with the experimental results. The depth of the nitriding–laser quenching composite layer greatly improved compared with the nitriding or laser hardening layers. The austenitizing temperature of the 42CrMo steel was reduced to 577 °C by nitriding. Therefore, the depth of the austenitized layer of the 42CrMo steel heated with the same laser power significantly increased. Under the same laser process conditions, more austenitic phase transformation was observed in the nitriding layer than in the non-nitriding layer, so martensitic phase transformation was more likely to occur in the subsequent cooling process. After plasma nitriding at 460 °C for 16 h and laser quenching, the modified layer depth of the 42CrMo steel reached 990 μm, and the average surface hardness of the 42CrMo steel reached 625 HV0.1. The friction coefficient of the modified layer was the lowest, with a value of 0.433, and the minimum wear value was 1.024 mm3. Double hardness and thickness of the modified layer could be obtained by nitriding and laser quenching composite processes.

Funder

Class III Peak Discipline of Shanghai-Materials Science and Engineering (High-Energy Beam Intelligent Processing and Green Manufacturing).

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3