Affiliation:
1. Department of Computer Engineering, University of Chosun, Gwangju 61452, Republic of Korea
Abstract
In the last three decades, the development of functional magnetic resonance imaging (fMRI) has significantly contributed to the understanding of the brain, functional brain mapping, and resting-state brain networks. Given the recent successes of deep learning in various fields, we propose a 3D-CNN-LSTM classification model to diagnose health conditions with the following classes: condition normal (CN), early mild cognitive impairment (EMCI), late mild cognitive impairment (LMCI), and Alzheimer’s disease (AD). The proposed method employs spatial and temporal feature extractors, wherein the former utilizes a U-Net architecture to extract spatial features, and the latter utilizes long short-term memory (LSTM) to extract temporal features. Prior to feature extraction, we performed four-step pre-processing to remove noise from the fMRI data. In the comparative experiments, we trained each of the three models by adjusting the time dimension. The network exhibited an average accuracy of 96.4% when using five-fold cross-validation. These results show that the proposed method has high potential for identifying the progression of Alzheimer’s by analyzing 4D fMRI data.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献