QA-kNN: Indoor Localization Based on Quartile Analysis and the kNN Classifier for Wireless Networks

Author:

Ferreira DavidORCID,Souza RichardORCID,Carvalho Celso

Abstract

Considering the variation of the received signal strength indicator (RSSI) in wireless networks, the objective of this study is to investigate and propose a method of indoor localization in order to improve the accuracy of localization that is compromised by RSSI variation. For this, quartile analysis is used for data pre-processing and the k-nearest neighbors (kNN) classifier is used for localization. In addition to the tests in a real environment, simulations were performed, varying many parameters related to the proposed method and the environment. In the real environment with reference points of 1.284 density per unit area (RPs/m2), the method presents zero-mean error in the localization in test points (TPs) coinciding with the RPs. In the simulated environment with a density of 0.327 RPs/m2, a mean error of 0.490 m for the localization of random TPs was achieved. These results are important contributions and allow us to conclude that the method is promising for locating objects in indoor environments.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Indoor fingerprint localization algorithm based on WKNN and LightGBM-GA;Measurement Science and Technology;2024-09-02

2. CALLOC: Curriculum Adversarial Learning for Secure and Robust Indoor Localization;2024 Design, Automation & Test in Europe Conference & Exhibition (DATE);2024-03-25

3. Selection of Signal Sources Influence at Indoor Positioning System;IEEE Transactions on Wireless Communications;2024-01

4. Intelligent Indoor Positioning Using a Testbed;2024

5. An improved weighted KNN fingerprint positioning algorithm;Wireless Networks;2023-06-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3