Experimental Research on Shipborne SINS Rapid Mooring Alignment with Variance-Constraint Kalman Filter and GNSS Position Updates

Author:

Fan Zhipeng12ORCID,Chai Hua1,Liang Xinghui1,Wang Hubiao1

Affiliation:

1. State Key Laboratory of Geodesy and Earth’s Dynamics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430000, China

2. College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100000, China

Abstract

Analytical coarse alignment and Kalman filter fine alignment based on zero-velocity are typically used to obtain initial attitude for inertial navigation systems (SINS) on a static base. However, in the shipboard mooring state, the static observation condition is corrupted. This paper presents a rapid alignment method for SINS on swaying bases. The proposed method begins with a coarse alignment technique in the inertial frame to obtain an initial rough attitude. Subsequently, a Kalman filter with position updates is employed to estimate the remaining misalignment error. To enhance the filter estimation performance, an appropriate lower boundary is set to the target states’ variances according to a carefully designed relative convergence index. The variance-constraint Kalman filter (VCKF) approach is proposed in this paper, and the shipborne experiments validate its effectiveness. The results demonstrate that the VCKF approach significantly reduces the time requirement for fine alignment to achieve the same accuracy on a swaying base, from 90 min in the classic Kalman filter to 30 min. Additionally, the parameter estimation performance in the Kalman filter is also improved, particularly in situations where unpredicted external interference is involved during fine alignment.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3