Fine Segmentation of Chinese Character Strokes Based on Coordinate Awareness and Enhanced BiFPN

Author:

Mo Henghui1,Wei Linjing1

Affiliation:

1. College of Information Science and Technology, Gansu Agricultural University, Lanzhou 730070, China

Abstract

Considering the complex structure of Chinese characters, particularly the connections and intersections between strokes, there are challenges in low accuracy of Chinese character stroke extraction and recognition, as well as unclear segmentation. This study builds upon the YOLOv8n-seg model to propose the YOLOv8n-seg-CAA-BiFPN Chinese character stroke fine segmentation model. The proposed Coordinate-Aware Attention mechanism (CAA) divides the backbone network input feature map into four parts, applying different weights for horizontal, vertical, and channel attention to compute and fuse key information, thus capturing the contextual regularity of closely arranged stroke positions. The network’s neck integrates an enhanced weighted bi-directional feature pyramid network (BiFPN), enhancing the fusion effect for features of strokes of various sizes. The Shape-IoU loss function is adopted in place of the traditional CIoU loss function, focusing on the shape and scale of stroke bounding boxes to optimize the bounding box regression process. Finally, the Grad-CAM++ technique is used to generate heatmaps of segmentation predictions, facilitating the visualization of effective features and a deeper understanding of the model’s focus areas. Trained and tested on the public Chinese character stroke datasets CCSE-Kai and CCSE-HW, the model achieves an average accuracy of 84.71%, an average recall rate of 83.65%, and a mean average precision of 80.11%. Compared to the original YOLOv8n-seg and existing mainstream segmentation models like SegFormer, BiSeNetV2, and Mask R-CNN, the average accuracy improved by 3.50%, 4.35%, 10.56%, and 22.05%, respectively; the average recall rates improved by 4.42%, 9.32%, 15.64%, and 24.92%, respectively; and the mean average precision improved by 3.11%, 4.15%, 8.02%, and 19.33%, respectively. The results demonstrate that the YOLOv8n-seg-CAA-BiFPN network can accurately achieve Chinese character stroke segmentation.

Funder

The Ministry of Science and Technology’s National Foreign Experts Project

Gansu Province Higher Education Industry Support Project

Gansu Province Key R&D Plan

Lanzhou Talent Innovation and Entrepreneurship Project

2020 Gansu Agricultural University Graduate Education Research Project

2021 Gansu Agricultural University-level “Three-dimensional Education” Pilot Extension Teaching Research Project

2022 Gansu Agricultural University-level Comprehensive Professional Reform Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3