Wind Load Characteristics of Wind Barriers Induced by High-Speed Trains Based on Field Measurements

Author:

Zou ,Fu ,He ,Cai ,Zhou ,Zhou

Abstract

This paper focuses on field measurements and analyses of train-generated wind loads on wind barriers (3.0 m height and porosity 0%) with respect to different running speeds of the CRH380A EMU vehicle. Multi-resolution analysis was conducted to identify the pressure distribution in different frequency bands. Results showed that the wind pressure on the wind barrier caused by train-induced wind had two significant impacts with opposite directions, which were the “head wave” and “tail wave”. The peak wind pressure on the wind barrier was approximately proportional to the square of the speed of the train, and the peak wind pressure decreased rapidly along the wind barrier height from the bottom of the wind barrier. The maximum wind pressure occurred at the rail surface height. Furthermore, results of the multi-resolution analysis illustrated that the energy of the frequency band from 0 to 2.44 Hz accounted for 94% of the total energy. This indicated that the low-frequency range component of the wind pressure dominated the design of the wind barrier. The frequency of pulse excitation of train-induced wind loads may overlap with the natural frequency of barriers, and may lead to fatigue failure due to cyclic loads generated by the repeated passage of high-speed trains. In addition, the speed of the train had a negligible effect on the energy distribution of the wind pressure in the frequency domain, while the extreme pressure increased slightly with the increase of the speed of the train.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3