A Novel Artificial Intelligence Technique to Estimate the Gross Calorific Value of Coal Based on Meta-Heuristic and Support Vector Regression Algorithms

Author:

Bui Hoang-BacORCID,Nguyen HoangORCID,Choi YosoonORCID,Bui Xuan-Nam,Nguyen-Thoi TrungORCID,Zandi YousefORCID

Abstract

Gross calorific value (GCV) is one of the essential parameters for evaluating coal quality. Therefore, accurate GCV prediction is one of the primary ways to improve heating value as well as coal production. A novel evolutionary-based predictive system was proposed in this study for predicting GCV with high accuracy, namely the particle swarm optimization (PSO)-support vector regression (SVR) model. It was developed based on the SVR and PSO algorithms. Three different kernel functions were employed to establish the PSO-SVR models, including radial basis function, linear, and polynomial functions. Besides, three benchmark machine learning models including classification and regression trees (CART), multiple linear regression (MLR), and principle component analysis (PCA) were also developed to estimate GCV and then compared with the proposed PSO-SVR model; 2583 coal samples were used to analyze the proximate components and GCV for this study. Then, they were used to develop the mentioned models as well as check their performance in experimental results. Root-mean-squared error (RMSE), correlation coefficient (R2), ranking, and intensity color criteria were used and computed to evaluate the GCV predictive models developed. The results revealed that the proposed PSO-SVR model with radial basis function had better accuracy than the other models. The PSO algorithm was optimized in the SVR model with high efficiency. These should be used as a supporting tool in practical engineering to determine the heating value of coal seams in complex geological conditions.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference105 articles.

1. Coal;Suárez-Ruiz,2019

2. Life, Work, and Rebellion in the Coal Fields: The Southern West Virginia Miners, 1880–1922;Corbin,2015

3. World energy needs: A role for coal in the energy mix;McHugh

4. Coal as a promising source of critical elements: Progress and future prospects

5. Coal Demand, Market Forces, and, U.S. Coal Mine Closures;Jordan,2018

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3