Resource Scheduling in Cloud Computing Based on a Hybridized Whale Optimization Algorithm

Author:

Strumberger Ivana,Bacanin  NebojsaORCID,Tuba MilanORCID,Tuba EvaORCID

Abstract

The cloud computing paradigm, as a novel computing resources delivery platform, has significantly impacted society with the concept of on-demand resource utilization through virtualization technology. Virtualization enables the usage of available physical resources in a way that multiple end-users can share the same underlying hardware infrastructure. In cloud computing, due to the expectations of clients, as well as on the providers side, many challenges exist. One of the most important nondeterministic polynomial time (NP) hard challenges in cloud computing is resource scheduling, due to its critical impact on the cloud system performance. Previously conducted research from this domain has shown that metaheuristics can substantially improve cloud system performance if they are used as scheduling algorithms. This paper introduces a hybridized whale optimization algorithm, that falls into the category of swarm intelligence metaheuristics, adapted for tackling the resource scheduling problem in cloud environments. To more precisely evaluate performance of the proposed approach, original whale optimization was also adapted for resource scheduling. Considering the two most important mechanisms of any swarm intelligence algorithm (exploitation and exploration), where the efficiency of a swarm algorithm depends heavily on their adjusted balance, the original whale optimization algorithm was enhanced by addressing its weaknesses of inappropriate exploitation–exploration trade-off adjustments and the premature convergence. The proposed hybrid algorithm was first tested on a standard set of bound-constrained benchmarks with the goal to more accurately evaluate its performance. After, simulations were performed using two different resource scheduling models in cloud computing with real, as well as with artificial data sets. Simulations were performed on the robust CloudSim platform. A hybrid whale optimization algorithm was compared with other state-of-the-art metaheurisitcs and heuristics, as well as with the original whale optimization for all conducted experiments. Achieved results in all simulations indicate that the proposed hybrid whale optimization algorithm, on average, outperforms the original version, as well as other heuristics and metaheuristics. By using the proposed algorithm, improvements in tackling the resource scheduling issue in cloud computing have been established, as well enhancements to the original whale optimization implementation.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference99 articles.

1. Systems thinking for developing sustainable complex smart cities based on self-regulated agent systems and fog computing

2. A review of metaheuristic scheduling techniques in cloud computing

3. Load Balance Aware Genetic Algorithm for Task Scheduling in Cloud Computing;Zhan,2014

4. Cloudlet Scheduling by Hybridized Monarch Butterfly Optimization Algorithm

5. Elephant Herding Optimization Algorithm for Wireless Sensor Network Localization Problem;Strumberger,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3