A Systematic Review of the Discrepancies in Life Cycle Assessments of Green Concrete

Author:

Hafez ,Kurda ORCID,Cheung ORCID,Nagaratnam

Abstract

It is challenging to measure the environmental impact of concrete with the absence of a consensus on a standardized methodology for life cycle assessment (LCA). Consequently, the values communicated in the literature for “green” concrete alternatives vary widely between 84 and 612 kg eq CO2/m3. This does not provide enough evidence regarding the acclaimed environmental benefits compared to ordinary Portland cement concrete knowing that the average for the latter was concluded in this study to be around 370 kg eq CO2/m3. Thus, the purpose of this study was to survey the literature on concrete LCAs in an attempt to identify the potential sources of discrepancies and propose a potential solution. This was done through examining 146 papers systematically and attributing the sources of error to the four stages of an LCA: scope definition, inventory data, impact assessment and results interpretations. The main findings showed that there are 13 main sources of discrepancies in a concrete LCA that contribute to the incompatibility between the results. These sources varied between (i) user-based choices such as depending on a cradle-to-gate scope, selecting a basic volume-based functional unit and ignoring the impact allocation and (ii) intrinsic uncertainty in some of the elements, such as the means of transportation, the expected service life and fluctuations in market prices. The former affects the reliability of a study, and hence, a concrete LCA methodology should not allow for any of the uncertainties. On the other hand, the latter affects the degree of uncertainty of the final outcome, and hence, we recommended conducting scenario analyses and communicating the aggregated uncertainty through the selected indicators.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3