Aroma Release of Olfactory Displays Based on Audio-Visual Content

Author:

Alraddadi Safaa,Alqurashi Fahad,Tsaramirsis GeorgiosORCID,Al Luhaybi Amany,M. Buhari SeyedORCID

Abstract

Variant approaches used to release scents in most recent olfactory displays rely on time for decision making. The applicability of such an approach is questionable in scenarios like video games or virtual reality applications, where the specific content is dynamic in nature and thus not known in advance. All of these are required to enhance the experience and involvement of the user while watching or participating virtually in 4D cinemas or fun parks, associated with short films. Recently, associating the release of scents to the visual content of the scenario has been studied. This research enhances one such work by considering the auditory content along with the visual content. Minecraft, a computer game, was used to collect the necessary dataset with 1200 audio segments. The Inception v3 model was used to classified the sound and image dataset. Further ground truth classification on this dataset resulted in four classes: grass, fire, thunder, and zombie. Higher accuracies of 91% and 94% were achieved using the transfer learning approach for the sound and image models, respectively.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. OdorAgent: Generate Odor Sequences for Movies Based on Large Language Model;2024 IEEE Conference Virtual Reality and 3D User Interfaces (VR);2024-03-16

2. Enhancing Virtual Experiences: A Holistic Approach to Immersive Special Effects;RAiSE-2023;2023-12-08

3. Virtual and Augmented Reality for Mechatronics based Applications;2022 4th International Conference on Applied Automation and Industrial Diagnostics (ICAAID);2022-03-29

4. A robust packet‐dropping covert channel for mobile intelligent terminals;International Journal of Intelligent Systems;2022-03-07

5. Special Issue on “Augmented Reality, Virtual Reality & Semantic 3D Reconstruction”;Applied Sciences;2021-09-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3