Hyperspectral Image Classification Based on Spectral and Spatial Information Using Multi-Scale ResNet

Author:

Wang Zong-YueORCID,Xia Qi-Ming,Yan Jing-Wen,Xuan Shu-Qi,Su Jin-He,Yang Cheng-Fu

Abstract

Hyperspectral imaging (HSI) contains abundant spectrums as well as spatial information, providing a great basis for classification in the field of remote sensing. In this paper, to make full use of HSI information, we combined spectral and spatial information into a two-dimension image in a particular order by extracting a data cube and unfolding it. Prior to the step of combining, principle component analysis (PCA) is utilized to decrease the dimensions of HSI so as to reduce computational cost. Moreover, the classification block used during the experiment is a convolutional neural network (CNN). Instead of using traditionally fixed-size kernels in CNN, we leverage a multi-scale kernel in the first convolutional layer so that it can scale to the receptive field. To attain higher classification accuracy with deeper layers, residual blocks are also applied to the network. Extensive experiments on the datasets from Pavia University and Salinas demonstrate that the proposed method significantly improves the accuracy in HSI classification.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3