Optimization Based on Product and Desirability Functions for Flow Distribution in Multi-Channel Cooling Systems of Power Inverters in Electric Vehicles

Author:

Hur ,Jeong ,Song ,Noh

Abstract

The onboard charger (OBC)/low-voltage DC-DC converter (LDC) integrated power inverter for electric vehicles comprises multiple electrical elements that can heat up, which can cause performance degradation and system instability issues in electric vehicles. To address this, a cooling system is included in the OBC/LDC integrated power inverter, which primarily uses water as a coolant. In this water cooling method, controlling the flow rate of water is critical for uniform cooling of the component. Thus, we propose an optimization method that helps determine the design variables to ensure uniform flow rate in each channel of the water-cooled system. The control variables for fluid-flux flow distribution optimization are selected by performing flow analysis for the initial design shape and analyzing their effects on fluid-flux flow distribution. For optimization analysis, the central composite design technique was applied; in addition, multi-response surface optimization using the same flow rate for each channel was performed. The optimization results were compared and verified using desirability functions based on the flow ratio of the cooling water channel, product function, and error function. Among single-response objective functions, the product function showed excellent performance. However, optimization using a multi-response objective function showed significantly higher prediction accuracy than the single-response function: using the optimized design obtained with the multi-response objective function improved the fluid-flux flow distribution uniformity by approximately 90% or more than the initial design.

Funder

Korea Evaluation Institute of Industrial Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3