High-Performance Biomemristor Embedded with Graphene Quantum Dots

Author:

Wang Lu1,Yang Jing1,Zhang Xiafan1,Wen Dianzhong1

Affiliation:

1. Heilongjiang Provincial Key Laboratory of Micronano Sensitive Devices and Systems, School of Electronic Engineering, Heilongjiang University, Harbin 150080, China

Abstract

By doping a dielectric layer material and improving the device’s structure, the electrical characteristics of a memristor can be effectively adjusted, and its application field can be expanded. In this study, graphene quantum dots are embedded in the dielectric layer to improve the performance of a starch-based memristor, and the PMMA layer is introduced into the upper and lower interfaces of the dielectric layer. The experimental results show that the switching current ratio of the Al/starch: GQDs/ITO device was 102 times higher than that of the Al/starch/ITO device. However, the switching current ratio of the Al/starch: GQDs/ITO device was further increased, and the set voltage was reduced (−0.75 V) after the introduction of the PMMA layer. The introduction of GQDs and PMMA layers can regulate the formation process of conductive filaments in the device and significantly improve the electrical performance of the memristor.

Funder

National Natural Science Foundation of China

Heilongjiang Provincial Natural Science Foundation of China

Basic Research Project funded by the Basic Research Business Funding for Provincial Universities in Heilongjiang Province

the Heilongjiang University Discipline Collaborative Innovation Achievement Project

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3