Combustion Synthesis of Materials for Application in Supercapacitors: A Review

Author:

Sisakyan Narek1,Chilingaryan Gayane1,Manukyan Aram1ORCID,Mukasyan Alexander S.2

Affiliation:

1. Institute for Physical Research, National Academy of Sciences of Armenia, Ashtarak-2, Ashtarak 0204, Armenia

2. Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA

Abstract

A supercapacitor is an energy storage device that has the advantage of rapidly storing and releasing energy compared to traditional batteries. One powerful method for creating a wide range of materials is combustion synthesis, which relies on self-sustained chemical reactions. Specifically, solution combustion synthesis involves mixing reagents at the molecular level in an aqueous solution. This method allows for the fabrication of various nanostructured materials, such as binary and complex oxides, sulfides, and carbon-based nanocomposites, which are commonly used for creating electrodes in supercapacitors. The solution combustion synthesis offers flexibility in tuning the properties of the materials by adjusting the composition of the reactive solution, the type of fuel, and the combustion conditions. The process takes advantage of high temperatures, short processing times, and significant gas release to produce well crystalline nanostructured materials with a large specific surface area. This specific surface area is essential for enhancing the performance of electrodes in supercapacitors. Our review focuses on recent publications in this field, specifically examining the relationship between the microstructure of materials and their electrochemical properties. We discuss the findings and suggest potential improvements in the properties and stability of the fabricated composites based on the results.

Funder

Higher Education and Science Committee of the Republic of Armenia

Foundation for Armenian Science and Technology

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3