Electrochemical Investigations of Double Perovskite M2NiMnO6 (Where M = Eu, Gd, Tb) for High-Performance Oxygen Evolution Reaction

Author:

Shinde Kiran P.1,Chavan Harish S.2,Salunke Amol S.3,Oh Jeongseok1,Aqueel Ahmed Abu Talha3ORCID,Shrestha Nabeen K.3ORCID,Im Hyunsik3,Park Joonsik1,Inamdar Akbar I.3ORCID

Affiliation:

1. Department of Materials Science and Engineering, Hanbat National University, Daejeon 34158, Republic of Korea

2. Department of Chemistry and Chemical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea

3. Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea

Abstract

Double perovskites are known for their special structures which can be utilized as catalyst electrode materials for electrochemical water splitting to generate carbon-neutral hydrogen energy. In this work, we prepared lanthanide series metal-doped double perovskites at the M site such as M2NiMnO6 (where M = Eu, Gd, Tb) using the solid-state reaction method, and they were investigated for an oxygen evolution reaction (OER) study in an alkaline medium. It is revealed that the catalyst with a configuration of Tb2NiMnO6 has outstanding OER properties such as a low overpotential of 288 mV to achieve a current density of 10 mAcm−2, a lower Tafel slope of 38.76 mVdec−1, and a long cycling stability over 100 h of continuous operation. A-site doping causes an alteration in the oxidation or valence states of the NiMn cations, their porosity, and the oxygen vacancies. This is evidenced in terms of the Mn4+/Mn3+ ratio modifying electronic properties and the surface which facilitates the OER properties of the catalyst. This is discussed using electrochemical impedance spectroscopy (EIS) and electrochemical surface area (ECSA) of the catalysts. The proposed work is promising for the synthesis and utilization of future catalyst electrodes for high-performance electrochemical water splitting.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3