Coupled Precipitation of Dual-Nanoprecipitates to Optimize Microstructural and Mechanical Properties of Cast Al–Cu–Mg–Mn Alloys via Modulating the Mn Contents

Author:

Zhang Han1ORCID,Hao Qitang1,Li Xinlei1,Yu Wentao2,Xue Yanqing1

Affiliation:

1. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072, China

2. Shaanxi Key Laboratory of Surface Engineering and Remanufacturing, Xi’an University, Xi’an 710065, China

Abstract

The effect of Mn content on the microstructure evolution and mechanical properties of Al–Cu–Mg–x Mn alloys at ambient temperature was investigated. The findings show that in the Mn-containing alloys at the as-cast state, the blocky primary T(Al20Cu2Mn3) phase coexisting with the Al2Cu phase appeared. With the increase in Mn content, the majority of the Al2Cu phase dissolved, nd a minor amount of the T phase remained at the grain boundary after solution treatment. The rod-like TMn (Al20Cu2Mn3) nanoprecipitate was simultaneously distributed at grain boundaries and the interiors, while a high density of needle-like θ″ (Al3Cu) nanoprecipitate was also observed in the T6 state. Further increases in Mn content promoted the dispersion of the TMn phase and inhibited the growth and transformation of the θ″ phase. Tensile test results show that 0.7 wt.% Mn alloy had excellent mechanical properties at ambient temperature with ultimate tensile strength, yield strength, and fracture elongation of 498.7 MPa, 346.2 MPa, and 19.2%, respectively. The subsequent calculation of strengthening mechanisms elucidates that precipitation strengthening is the main reason for the increase in yield strength of Mn-containing alloys.

Funder

Key Research and Development Plan of Shaanxi Province

Xianyang City Qin Chuang Yuan Science and Technology Innovation Project

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3