A Diamond/Graphene/Diamond Electrode for Waste Water Treatment

Author:

Wang Yibao1ORCID,Gai Zhigang1,Guo Fengxiang1,Zhang Mei1,Zhang Lili1,Xia Guangsen1,Chai Xu1,Ren Ying2ORCID,Zhang Xueyu1ORCID,Jiang Xin3ORCID

Affiliation:

1. Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266100, China

2. Engineering and Technology Research Center of Diamond Composite Materials of Henan, School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China

3. Institute of Materials Engineering, University of Siegen, 57076 Siegen, Germany

Abstract

Boron-doped diamond (BDD) thin film electrodes have great application potential in water treatment. However, the high electrode energy consumption due to high resistance directly limits the application range of existing BDD electrodes. In this paper, the BDD/graphene/BDD (DGD) sandwich structure electrode was prepared, which effectively improved the conductivity of the electrode. Meanwhile, the sandwich electrode can effectively avoid the degradation of electrode performance caused by the large amount of non-diamond carbon introduced by heavy doping, such as the reduction of the electrochemical window and the decrease of physical and chemical stability. The microstructure and composition of the film were characterized by scanning electron microscope (SEM), atomic force microscopy (AFM), Raman spectroscopy, and transmission electron microscopy (TEM). Then, the degradation performance of citric acid (CA), catechol, and tetracycline hydrochloride (TCH) by DGD electrodes was systematically studied by total organic carbon (TOC) and Energy consumption per unit TOC removal (ECTOC). Compared with the single BDD electrode, the new DGD electrode improves the mobility of the electrode and reduces the mass transfer resistance by 1/3, showing better water treatment performance. In the process of dealing with Citric acid, the step current of the DGD electrode was 1.35 times that of the BDD electrode, and the energy utilization ratio of the DGD electrode was 2.4 times that of the BDD electrode. The energy consumption per unit TOC removal (ECTOC) of the DGD electrode was lower than that of BDD, especially Catechol, which was reduced to 66.9% of BDD. The DGD sandwich electrode, as a new electrode material, has good electrochemical degradation performance and can be used for high-efficiency electrocatalytic degradation of organic pollutants.

Funder

National Natural Science Foundation of China

Young Taishan Scholar Program of Shandong Province

Key Research and Development Program of Shandong Province

Major Scientific and Technological Innovation Program of Shandong Province

Project supported by Excellent Youth Innovation Team of Shandong Province

Natural Science Foundation of Shandong Province, China

Qingdao Science and Technology Benefit The People Demonstration Guide Special Project

Science Education Industry Integration Innovation Pilot Project of Shandong Academy of Sciences

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3