Structure and Magnetic Properties of Mechanosynthesized Nanocrystalline Fe2CrSi Heusler Alloy

Author:

Jartych Elżbieta1ORCID,Jaskółowska Paulina2,Oleszak Dariusz2ORCID,Pękała Marek3ORCID

Affiliation:

1. Department of Electronics and Information Technology, Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, 20-618 Lublin, Poland

2. Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warsaw, Poland

3. Chemistry Department, Warsaw University, 02-089 Warsaw, Poland

Abstract

Heusler alloys constitute an interesting group of materials with wide applications. The purpose of the present study was to use the mechanical alloying method to synthesize Fe2CrSi Heusler alloy and learn about its structure and magnetic properties. Pure metal elements were ground for various periods of time in a planetary ball mill, and the process of alloy formation was monitored using X-ray diffraction and Mössbauer spectroscopy. It was found that after 20 h of milling, the disordered BCC solid solution was formed, with an average crystallite size ~11 nm. After thermal treatment, the desired Fe2CrSi Heusler alloy was obtained, with a small amount of secondary phases. Detailed XRD analysis showed the coexistence of two varieties of Heusler phase, namely Fm-3m and Pm-3n. The main result of this work is the detection of the hyperfine magnetic field distribution using Mössbauer spectroscopy. The occurrence of this distribution proves atomic disorder in the crystalline structure of the obtained Heusler alloy. Macroscopic magnetic measurements revealed soft magnetic properties of the alloy, with a magnetic moment of ~2.3 μB/f.u., only slightly larger than the theoretically predicted value.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3