Nitrogen Modulates the Effects of Short-Term Heat, Drought and Combined Stresses after Anthesis on Photosynthesis, Nitrogen Metabolism, Yield, and Water and Nitrogen Use Efficiency of Wheat

Author:

Ru Chen,Hu Xiaotao,Chen Dianyu,Song Tianyuan,Wang Wene,Lv Mengwei,Hansen Neil C.

Abstract

More frequent and more intense heat waves and greater drought stress will occur in the future climate environment. Short-term extreme heat and drought stress often occur simultaneously after winter wheat anthesis, which has become the major constraint threatening future wheat yield. In this study, short-term heat, drought and their combination stress were applied to wheat plants after anthesis, and all wheat plants were restored to the outdoor normal temperature and full watering after stress treatment. The aim of the current study was to evaluate the role of nitrogen (N) in modulating the effects of post-anthesis short-term heat, drought and their combination stress on photosynthesis, N metabolism-related enzymes, the accumulation of N and protein and growth, as well as on the yield and water (WUE) and N use efficiency (NUE) of wheat after stress treatment. The results showed that compared with low N application (N1), medium application (N2) enhanced the activities of nitrate reductase (NR) and glutamine synthase (GS) in grains under post-anthesis heat and drought stress alone, which provided a basis for the accumulation of N and protein in grains at the later stage of growth. Under post-anthesis individual stresses, N2 or high application (N3) increased the leaf photosynthetic rate (An), PSII photochemical efficiency and instantaneous WUE compared with N1, whereas these parameters were usually significantly improved by N1 application under post-anthesis combined stress. The positive effect of increased An by N application on growth was well represented in a higher green leaf area, aboveground dry mass and plant height, and the variation in An can be explained more accurately by the N content per unit leaf area. Short-term heat, drought and combined stress after anthesis resulted in a pronounced decrease in yield by reducing grain number per spike and thousand kernel weight. The reduction in NUE under combined stress was higher than that under individual heat and drought stress. Compared with N1, N2 or N3 application significantly prevented the decrease in yield and NUE caused by post-anthesis heat and drought stress alone. However, N1 application was conducive to improving the productivity, WUE and NUE of wheat when exposed to post-anthesis combined stress. The current data indicated that under short-term individual heat and drought stress after anthesis, appropriately increasing N application effectively improved the growth and physiological activity of wheat compared with N1, alleviating the reduction in yield, WUE and NUE. However, under combined stress conditions, reducing N application (N1) may be a suitable strategy to compensate for the decrease in yield, WUE and NUE.

Funder

Xiaotao Hu

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference68 articles.

1. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,2014

2. The physical science basis. Working group I technical support unit. Climate change,2013

3. Agroclimatic conditions in Europe under climate change

4. New Approaches for Crop Genetic Adaptation to the Abiotic Stresses Predicted with Climate Change

5. A plant's perspective of extremes: terrestrial plant responses to changing climatic variability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3