Channel Bed Deformation and Ice Jam Evolution around Bridge Piers

Author:

Hu Haotian,Wang Jun,Cheng Tiejie,Hou Zhixing,Sui Jueyi

Abstract

The interaction between the evolution of an ice jam and the local scour at bridge piers becomes much more complicated due to the evolution of both the channel bed and ice jam. Thus, research work regarding this topic has been hardly conducted. In the present study, experiments under different flow conditions with three different pier shapes were carried out. Through laboratory experiments, the development of scour holes around bridge piers under open flow, ice-covered, and ice-jammed flow conditions was compared. The results show that under the same hydraulic condition and with the same ice discharge rate (Qi/Q), the development of an initial ice jam with a local scour around bridge piers along the entire flume takes a relatively short time. However, it takes a longer time for an ice jam to achieve an equilibrium state. With the presence of a local scour at bridge piers, after an ice jam reaches an equilibrium state, the ice jam thickness, water level, and water depth for flow are relatively larger compared to that without a local scour at the pier. The equilibrium ice jam thickness around the pier is negatively correlated with the initial flow Froude number. When the development of an initial ice jam is dominated by a mechanical thickening process, the rate of the development of a scour hole around a pier is faster. On the other hand, when the development of an initial ice jam is dominated by a hydraulic thickening process, the development of a scour hole around a pier can be treated as a scour process under an ice-covered flow condition. An equation was developed to determine the scour depth around a pier under an ice-jammed flow condition by considering related factors such as the flow Froude number, ice jam thickness, and ice discharge rate. The results of this research can provide a reference for bridge design and safety protection, as well as the interaction mechanism of local scour and ice jam evolution.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference40 articles.

1. Velocity profiles and incipient motion of frazil particles under ice cover

2. Impacts of bridge pier on ice jam initiation and ice thickness in a curved channel—An experimental study;Wang;J. Hydraul. Eng.,2017

3. Local scour around a bridge pier under ice-jammed flow condition – an experimental study

4. Initiation of ice jam in front of bridge piers—An experimental study

5. lmpact of bridge piers on ice jam stage variation: An experimental study;Wang;Adv. Water Sci.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3