Adsorption of Pb2+ Ions from Aqueous Solution onto Porous Kappa-Carrageenan/Cellulose Hydrogels: Isotherm and Kinetics Study

Author:

Kalaiselvi Karuppiah1,Mohandoss Sonaimuthu2,Ahmad Naushad3ORCID,Khan Mohammad Rizwan3ORCID,Manoharan Ranjith Kumar4

Affiliation:

1. Department of Chemistry, Government Arts and Science College, Paramakudi 623701, Tamil Nadu, India

2. School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea

3. Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

4. Department of Civil Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea

Abstract

Heavy metal ion pollution poses severe health risks. In this study, a kappa-carrageenan/cellulose (κ-CG/CL) hydrogel was prepared using a facile one-step method to remove Pb2+ ions from aqueous solutions. The functional groups and crystallinity nature of κ-CG/CL hydrogel have been identified via Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). In contrast, the porous morphology and size distribution on the surface of κ-CG/CL hydrogel with a pore size of 1–10 μm were identified using scanning electron microscope (SEM) and Brunauer–Emmett–Teller (BET) surface area analysis. The as-prepared κ-CG/CL hydrogel effectively removed Pb2+ ions, primary environmental pollutants. The effects of pH and contact time on Pb2+ adsorption were studied along with the adsorption isotherms and kinetics of Pb2+ adsorption onto the hydrogels from aqueous solutions. Notably, the aqueous solutions were effectively treated with the prepared κ-CG/CL hydrogels to remove Pb2+ ions. The adsorption results fit well with pseudo-first- and second-order kinetic, Elovich, intra-particle diffusion, and Langmuir and Freundlich isotherm models. Based on the fitting results, the maximum adsorption capacity was obtained with the Freundlich isotherm model of κ-CG/CL hydrogel found to be 486 ± 28.5 mg/g (79%). Reusability studies revealed that the κ-CG/CL hydrogel could remove Pb2+ ions with more than 79% removal efficiency after eight adsorption–desorption cycles. In addition, its mechanism for efficiently adsorbing and removal of Pb2+ ions was analyzed. These findings imply that the κ-CG/CL hydrogel has substantial potential for application in removing and recycling heavy metal ions from aqueous solutions.

Funder

King Saud University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3