A Systemic Approach to Simulate the Construction Process of Self-Supporting Masonry Structures

Author:

Paris Vittorio1ORCID,Ruscica Giuseppe1ORCID,Olivieri Carlo2ORCID,Mirabella Roberti Giulio1ORCID

Affiliation:

1. Department of Engineering and Applied Sciences, Università degli Studi di Bergamo, Via G. Marconi 5, 24044 Dalmine, Italy

2. Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy

Abstract

The building sector has a significant impact on the environment due to its unproductive and technologically outdated practices. Although digital tools have emerged as potential solutions, current building practices often lack automation and efficiency. Throughout history, several self-supporting techniques, i.e., construction methods dedicated to the building of shells that do not need support during the construction works, have been developed. These techniques allow for reducing waste and minimizing construction costs. Combining self-supporting techniques and digital tools could aid the development of contemporary, highly sustainable, and efficient building practices that permit the use of alternative and sustainable materials. Building on this, the research conducted defines an approach for evaluating the balanced state of masonry structures during construction works and built using robotic technologies. The approach considers the factors that govern the stability under construction derived through studying self-supporting building techniques. The proposed approach assesses the structural state under construction, evaluating the need for temporary supports. An example of a masonry arch is provided to emphasize the importance of construction factors in sustainable building practices. Then the method is applied to a real case study. Overall, integrating self-supporting techniques with digital tools has the potential to revolutionize the building sector, and create highly sustainable and efficient practices.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3