Affiliation:
1. College of Automation, Nanjing University of Posts and Telecommunications, Wenyuan Road 9, Nanjing 210023, China
Abstract
With accelerating grid decarbonization and technological breakthroughs, grid-connected photovoltaic (PV) systems are continuously connected to distribution networks at all voltage levels. As the grid interaction interfaces between PV panels and the distribution network, PV inverters must operate flawlessly to avoid energy and financial losses. As the failure of semiconductor switches is the leading cause of abnormal operation of PV inverters and typically cannot be detected by internal protection circuits, this paper aims to develop a method for the autonomous diagnosis of semiconductor power switch open-circuit faults in three-phase grid-connected PV inverters. In this study, a ReliefF-mRMR-based multi-domain feature selection method is designed to ensure the completeness of the fault characteristics. An NGO-HKELM-based classification method is proposed to guarantee the desired balance between generalization and exploration capability. The proposed method overcomes the common problems of poor training efficiency and imbalances between generalization and exploration capabilities. The performance of the proposed method is verified with the detection of switch OC faults in a three-phase H-bridge inverter and neutral-point-clamped inverter, with diagnostic accuracy of 100% and 99.46% respectively.
Funder
Innovation and Entrepreneurship Program of Jiangsu Province
NUPTSF
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献