Abstract
Rapid quantification of nitrite (NO2−) in food, drink and body fluids is of significant importance for both food safety and point-of-care (POA) applications. However, conventional nitrite analytical methods are complicated, constrained to sample content, and time-consuming. Inspired by a nitrite-triggered surface plasmon-assisted catalysis (SPAC) reaction, a rapid point-of-care detection salivary nitrate was developed in this work. NO2− ions can trigger the rapid conversion of p-aminothiophenol (PATP) to p,p′-dimercaptozaobenzene (DMAB) on gold nanoparticles (GNPs) under light illumination, and the emerged new bands at ca. 1140, 1390, 1432 cm−1 originating from DMAB can be used to the quantification of nitrite. Meanwhile, to make the method entirely suitable for on-site fast screen or point-of-care application, the technique is needed to be further optimized. The calibration graph for nitrates was linear in the range of 1–100 µM with a correlation coefficient of 0.9579. The limit of detection was 1 µM. The facile method could lead to a further understanding of the progression and treatment of periodontitis and to guide professionals in planning on-site campaigns to effectively control periodontal diseases.
Funder
National Key R&D Plan of China
National Natural Science Foundation of China
Subject
Clinical Biochemistry,General Medicine
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献