Abstract
Monitoring of intracranial pressure (ICP) is important for patients at risk of raised ICP, which may indicate developing diseases in brains that can lead to brain damage or even death. Monitoring ICP can be invaluable in the management of patients suffering from brain injury or hydrocephalus. To date, invasive measurements are still the standard method for monitoring ICP; however, these methods can not only cause bleeding or infection but are also very inconvenient to use, particularly for infants. Currently, none of the non-invasive methods can provide sufficient accuracy and ease of use while allowing continuous monitoring in routine clinical use at low cost. Here, we have developed a wearable, non-invasive ICP sensor that can be used like a band-aid. For the fabrication of the ICP sensor, a novel freeze casting method was developed to encapsulate the liquid metal microstructures within thin and flexible polymers. The final thickness of the ICP sensor demonstrated is 500 µm and can be further reduced. Three different designs of ICP sensors were tested under various pressure actuation conditions as well as different temperature environments, where the measured pressure changes were stable with the largest stability coefficient of variation being only CV = 0.0206. In addition, the sensor output values showed an extremely high linear correlation (R2 > 0.9990) with the applied pressures.
Funder
Shenzhen Basic Research Grant
Kwangwoon University
Subject
Clinical Biochemistry,General Medicine
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献