Silicone Rubber Fabry-Perot Pressure Sensor Based on a Spherical Optical Fiber End Face

Author:

Jiang Changxing,Lei Xiaohua,Chen Yuru,Lv Shaojie,Liu Xianming,Zhang Peng

Abstract

To improve the fringe contrast and the sensitivity of Fabry-Perot (FP) pressure sensors, a silicone rubber FP pressure sensor based on a spherical optical fiber end face is proposed. The ratio of silicone rubber ingredients and the diameter and thickness of silicone rubber diaphragm were optimized by a simulation based on experimental tests that analyzed elastic parameters, and the influence of the radius of a spherical optical fiber and the initial cavity length of the sensor on the fringe contrast was investigated and optimized. Pressure sensor samples were fabricated for pressure test and temperature cross-influence test. Gas pressure experimental results within a pressure range of 0~40 kPa show the average sensitivity of the sensor is −154.56 nm/kPa and repeatability error is less than 0.71%. Long-term pressure experimental results show it has good repeatability and stability. Temperature experimental results show its temperature cross-sensitivity is 0.143 kPa/°C. The good performance of the proposed FP pressure sensor will expand its applications in biochemical applications, especially in human body pressure monitoring.

Funder

Xiaohua Lei,Zhang Peng,Xianming Liu

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cavity-Length Spectrum Sensing (CLSS) based on multi fiber Fabry-Pérot(F-P) cavities for refractive index monitoring;Sensors and Actuators A: Physical;2024-10

2. Additive Manufacturing of Sensors: A Comprehensive Review;International Journal of Precision Engineering and Manufacturing-Green Technology;2024-05-02

3. A high-sensitivity EFPI acoustic sensor based on silicone rubber diaphragm;Advanced Optical Manufacturing Technologies and Applications 2022; and 2nd International Forum of Young Scientists on Advanced Optical Manufacturing (AOMTA and YSAOM 2022);2023-01-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3