Abstract
The search for simple models of drainage–irrigation systems functioning and management has still been an important research objective. Therefore, we presented a conceptual model based on groundwater dynamics equation along with proper assumptions on water equivalent of transient porosity-i.e., storage in the soil profile based on the long-term experience of the research on drainage-sub-irrigation systems. Several parameters have been incorporated in the model to effectively and comprehensively describe drainage/irrigation time, leakage from the soil profile, the soil moisture content in the root zone, and the shape of the groundwater table on the drainage–sub-irrigation plot. The model was successfully validated on groundwater level data in ditch midspacing on an experimental site located within a valley sub-irrigation system with the advantage of a relatively simple representation of flows through the soil profile. The robust character of the conceptual equation of groundwater dynamics, as well as the approach to its’ parameters, were proved through a close match between the model and observations. This promotes the capacities of the proposed modeling procedure to conceptualize drainage-irrigation development with the impact of external and internal sources of water. The potential was offered for the evaluation of water management practices in a valley system influenced by horizontal inflows from surrounding areas as indicated by calibration results. Future challenges were revealed in terms of water exchange between the plots and validation of soil moisture content modeling.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献