Assessing Annual Actual Evapotranspiration Based on Climate, Topography and Soil in Natural and Agricultural Ecosystems

Author:

Demertzi Kleoniki,Pisinaras VassiliosORCID,Lekakis Emanuel,Tziritis EvangelosORCID,Babakos KonstantinosORCID,Aschonitis VassilisORCID

Abstract

Simple formulas for estimating annual actual evapotranspiration (AET) based on annual climate data are widely used in large scale applications. Such formulas do not have distinct compartments related to topography, soil and irrigation, and for this reason may be limited in basins with high slopes, where runoff is the dominant water balance component, and in basins where irrigated agriculture is dominant. Thus, a simplistic method for assessing AET in both natural ecosystems and agricultural systems considering the aforementioned elements is proposed in this study. The method solves AET through water balance based on a set of formulas that estimate runoff and percolation. These formulas are calibrated by the results of the deterministic hydrological model GLEAMS (Groundwater Loading Effects of Agricultural Management Systems) for a reference surface. The proposed methodology is applied to the country of Greece and compared with the widely used climate-based methods of Oldekop, Coutagne and Turk. The results show that the proposed methodology agrees very well with the method of Turk for the lowland regions but presents significant differences in places where runoff is expected to be very high (sloppy areas and areas of high rainfall, especially during December–February), suggesting that the proposed method performs better due to its runoff compartment. The method can also be applied in a single application considering irrigation only for the irrigated lands to more accurately estimate AET in basins with a high percentage of irrigated agriculture.

Publisher

MDPI AG

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3