Machine Learning-Based Prediction of Specific Energy Consumption for Cut-Off Grinding

Author:

Awan Muhammad Rizwan,González Rojas Hernán A.ORCID,Hameed SaqibORCID,Riaz FahidORCID,Hamid Shahzaib,Hussain AbrarORCID

Abstract

Cut-off operation is widely used in the manufacturing industry and is highly energy-intensive. Prediction of specific energy consumption (SEC) using data-driven models is a promising means to understand, analyze and reduce energy consumption for cut-off grinding. The present article aims to put forth a novel methodology to predict and validate the specific energy consumption for cut-off grinding of oxygen-free copper (OFC–C10100) using supervised machine learning techniques. State-of-the-art experimental setup was designed to perform the abrasive cutting of the material at various cutting conditions. First, energy consumption values were predicted on the bases of input process parameters of feed rate, cutting thickness, and cutting tool type using the three supervised learning techniques of Gaussian process regression, regression trees, and artificial neural network (ANN). Among the three algorithms, Gaussian process regression performance was found to be superior, with minimum errors during validation and testing. The predicted values of energy consumption were then exploited to evaluate the specific energy consumption (SEC), which turned out to be highly accurate, with a correlation coefficient of 0.98. The relationship of the predicted specific energy consumption (SEC) with material removal rate agrees well with the relationship depicted in physical models, which further validates the accuracy of the prediction models.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3