Wenzhou TE: A First-Principle-Calculated Thermoelectric Materials Database

Author:

Fang Ying1,Shao Hezhu1ORCID

Affiliation:

1. School of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China

Abstract

Since the implementation of the Materials Genome Project by the Obama administration in the United States, the development of various computational materials’ databases has fundamentally expanded the choice of industries such as materials and energy. In the field of thermoelectric materials, the thermoelectric figure of merit (ZT) quantifies the performance of the material. From the viewpoint of calculations for vast materials, the ZT values are not easily obtained due to their computational complexity. Here, we show how to build a database of thermoelectric materials based on first-principle calculations for the electronic and heat transport of materials. Firstly, the initial structures are classified according to the values of bandgap and other basic properties using the clustering algorithm K-means in machine learning, and high-throughput first principle calculations are carried out for narrow-bandgap semiconductors which exhibit a potential thermoelectric application. The present framework of calculations mainly includes a deformation potential module, an electrical transport performance module, a mechanical and a thermodynamic properties module. We have also set up a search webpage for the calculated database of thermoelectric materials, providing search facilities and the ability to view the related physical properties of materials. Our work may inspire the construction of more computational databases of first-principle thermoelectric materials and accelerate research progress in the field of thermoelectrics.

Funder

National Natural Science Foundation of China

Zhejiang Provincial Natural Science Foundation of China

Wenzhou Municipal Natural Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3