The Influence of Slag Content on the Structure and Properties of the Interfacial Transition Zone of Ceramisite Lightweight Aggregate Concrete

Author:

Fan Haihong1,Chen Shuaichen1,Wu Rui1,Wei Kaibo1

Affiliation:

1. College of Materials Science and Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China

Abstract

Ceramisite lightweight concrete has excellent performance and relatively light self-weight characteristics. At the same time, the recent development of green high-performance concrete and prefabricated components has also brought the abundant utilization of these mineral mixture. An interfacial transition zone exists between the hardened cement paste and the aggregate, which is the weakest part of the concrete, characterized by high porosity and low strength. In order to study the effect of slag content on the interfacial transition zone in lightweight high-strength concrete, experiments were designed to replace cement with slag at different contents (0%, 5%, 10%, 15%). A series of studies was conducted on its macro-strength, microstructure, and composition. The results indicated that the addition of slag improved the porosity and width of the interfacial transition zone. Adding slag did not reduce the thickness of the concrete interfacial transition zone significantly at 3 d, but it led to significant improvement in the thickness of the interfacial transition zone at 28 d, and the thickness of the interfacial zone at 28 d was reduced from 19 μm to 8.5 μm, a reduction of 55%. The minimum value of microhardness in the slurry region of the interfacial specimens also increased from 19 MPa to 26 MPa, an increase of 36%. In addition, the structural density of the interfacial region was further increased, resulting in varying degrees of improvement in the macroscopic anti-splitting strength. One of the important reasons for this phenomenon is that the addition of slag optimizes the chemical composition of the interface and promotes the continuation of the pozzolanic reactivity, which further enhances the hydration at the interface edge.

Funder

Natural Science Foundation of Shaanxi Province of China

Publisher

MDPI AG

Reference41 articles.

1. Development of High Strength Lightweight Concrete for Structural Applications;Wilson;Int. J. Cem. Compos. Lightweight Concr.,1988

2. Properties of High-Performance Lwac for Precast Structures with Brazilian Lightweight Aggregates;Rossignolo;Cem. Concr. Compos.,2003

3. Synthesis of Geopolymer from Industrial Wastes;Nazari;J. Clean Prod.,2015

4. Microstructure and Mechanical Behaviour of 3D Printed Ultra-High Performance Concrete After Elevated Temperatures;Dong;Addit. Manuf.,2022

5. High Temperature Resistance of Self Compacting Alkali Activated Slag/Portland Cement Composite Using Lightweight Aggregate;Dener;Constr. Build. Mater.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3