Effects of Different Oxidation Methods on the Wetting and Diffusion Characteristics of a High-Alumina Glass Sealant on 304 Stainless Steel

Author:

Chen Changjun12ORCID,Sui Liwei1,Zhang Min1ORCID

Affiliation:

1. Laser Processing Research Center, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215131, China

2. State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China

Abstract

Glass-to-metal seals are a very important element in the construction of vacuum tubes, electric discharge tubes, pressure-tight glass windows in metal cases, and metal or ceramic packages of electronic components. This paper presents the influence of different pretreatment methods on the high-temperature wettability of 304 stainless steel by high-alumina glass sealing. The pretreatment of the steel included laser surface melting and pre-oxidizing. The bonding characteristics of glass and stainless steel directly depend on the wettability in terms of the measured wetting angle, the type of oxide formed at the stainless steel surface, and the microstructural changes during the manufacturing process. The oxide film thickness on the stainless steel surface was evaluated to determine the optimal parameters. The film was wetted with high-alumina glass powder at different temperatures. The results showed that pre-oxidation decreased the wetting angle from 56.2° to 33.6°, while for the laser-melted surface, the wetting angle decreased from 49.8° to 31.5°. Scanning electron microscopy (SEM) revealed that the oxide film on the laser-melted surface was thicker and denser than that formed on the pre-oxidized surface. The present work shows that laser surface melting has a greater beneficial influence on the wetting and diffusion characteristics of 304 stainless steel sealed by high-alumina glass.

Funder

Jiangsu Province Key Research and Development Program

Open Fund for State Key Laboratory of Advanced Welding and Joining, the Harbin Institute of Technology

Open Fund for National Key Laboratory for Remanufactury

Publisher

MDPI AG

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3