Affiliation:
1. School of Mechanical and Electrical Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
2. Surface Engineering Institution, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
3. State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
Abstract
The application of superamphiphobic coatings improves the surface’s ability to repel fluids, thereby greatly enhancing its various functions, including anti-fouling, anti-corrosion, anti-icing, anti-bacterial, and self-cleaning properties. This maximizes the material’s potential for industrial applications. This work utilized the agglomeration phenomenon exhibited by nano-spherical titanium dioxide (TiO2) particles to fabricate 1H,1H,2H,2H-perfluorodecyltriethoxysilane (PFDTES) modified TiO2 (TiO2@fluoroPOS) fillers with low surface energy. This was achieved through the in-situ formation of protective armor on the surface of the agglomerates using the sol-gel method and fluorination modification. Polyvinylidene fluoride-tetrafluoropropylene (PVDF-HFP) and TiO2@fluoroPOS fillers were combined using a spraying technique to prepare P/TiO2@fluoroPOS coatings with superamphiphobicity. Relying on the abundance of papillae, micropores, and other tiny spaces on the surface, the coating can capture a stable air film and reject a variety of liquids. When the coatings were immersed in solutions of 2 mol/L HCl, NaCl, and NaOH for a duration of 12 h, they retained their exceptional superamphiphobic properties. Owing to the combined influence of the armor structure and the organic binder, the coating exhibited good liquid repellency during water jetting and sandpaper abrasion tests. Furthermore, the coating has shown exceptional efficacy in terms of its ability to be anti-icing, anti-waxing, and self-cleaning.
Funder
National Science and Technology Major Project
Fundamental Research Funds for the Central Universities
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献