Effect of Mineral Composition and Particle Size on the Failure Characteristics and Mechanisms of Marble in the China Jinping Underground Laboratory

Author:

Xu Hong12ORCID,Jing Peiqi12,Feng Guangliang3ORCID,Zhang Zhen12,Jiang Quan3,Yan Jie12

Affiliation:

1. National Engineering Research Center of Highway Maintenance Technology, Changsha University of Science & Technology, Changsha 410114, China

2. School of Civil Engineering, Changsha University of Science & Technology, Changsha 410114, China

3. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China

Abstract

In deep underground engineering, the deformation, failure characteristics, and mechanism of surrounding rock under the influence of grain sizes and mineral compositions are not clear. Based on CJPL-II variously colored marbles, the differences in grain size and mineral composition of the marble were analyzed by thin-section analysis and XRD tests, and the effect of intermediate principal stress on the mechanical properties of marble was investigated. Both SEM and microfracture analysis were coupled to reveal the failure mechanisms. The results highlight that the crack initiation strength, damage strength, peak strength, and elasticity modulus of Jinping marble exhibit an increasing trend with an increase in intermediate principal stress, while the peak strain initially increases and subsequently decreases. Moreover, this study established negative correlations between marble strength, brittleness characteristics, and fracture angle with grain size, whereas positive correlations were identified with the content of quartz, sodium feldspar, and the magnitude of the intermediate principal stress. The microcrack density in marble was found to increase with larger grain sizes and decrease with elevated quartz and sodium feldspar content, as well as with increasing intermediate principal stress. Notably, as the intermediate principal stress intensifies and grain size diminishes, the transgranular tensile failure of marble becomes more conspicuous. These research findings contribute to the effective implementation of disaster prevention and control strategies.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Open Fund of National Engineering Research Center of Highway Maintenance Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3