Investigation of the Effect of Blended Aggregate on the Strength and Drying Shrinkage Characteristics of Alkali-Activated Slag Mortar

Author:

Kang Choonghyun1ORCID,Park Yongmyung2,Kim Taewan2ORCID

Affiliation:

1. Department of Ocean Civil Engineering, Gyeongsang National University, Tongyeong 53064, Republic of Korea

2. Department of Civil Engineering, Pusan National University, Busan 46241, Republic of Korea

Abstract

To reduce drying shrinkage of AASC mortar (AASM), mixed aggregate mixed with river sand (RS) and silica sand in three sizes was used to investigate the effect of the physical properties of mixed aggregate on shrinkage reduction. A mixture of river sand (0.2–0.8 mm), S1 (2.5–5.0 mm), S2 (1.6–2.5 mm), and S3 (1.21–160 mm) had river sand–silica sand mean diameter ratios (dr) of 7.68 (S1/RS), 3.75 (S2/RS), and 3.02 (S3/RS). The compressive strength and drying shrinkage characteristics of mixed aggregates according to fineness modulus, surface area, bulk density, and pore space were investigated. It had the highest bulk density and lowest porosity at a substitution ratio of 50%, but the highest strength was measured at a substitution ratio of 50% or less. High mechanical properties were shown when the fineness modulus of the mixed aggregate was in the range of 2.25–3.75 and the surface area was in the range of 2.25–4.25 m2/kg. As the substitution rate of silica sand increased, drying shrinkage decreased. In particular, the drying shrinkage of RS + S1 mixed aggregate mixed with S1 silica sand, which had the largest particle size, was the smallest. When silica sand or river sand was used alone, the drying shrinkage of the sample manufactured only with S1, which has the largest particle size of silica sand, was the smallest among all mixes. Compared to RS, at a 5% activator concentration, drying shrinkage was reduced by approximately 40% for S1, 27% for S2, and 19% for S3. At a 10% concentration, S1 showed a reduction effect of 39%, S2 by 28%, and S3 by 13%. As a result of this study, it was confirmed that the drying shrinkage of AASM could be reduced simply by controlling the physical properties of the aggregate mixed with two types of aggregate. This is believed to have a synergistic effect in reducing drying shrinkage when combined with various reduction methods published in previous studies on AASM shrinkage reduction. However, additional research is needed to analyze the correlation and influencing factors between the strength, pore structure, and drying shrinkage of AASM using mixed aggregate.

Publisher

MDPI AG

Reference112 articles.

1. Carbon dioxide emission from the global cement industry;Worrell;Annu. Rev. Energy Environ.,2001

2. Hendriks, C.A., Worrell, E., and De Jager, D. (2004, January 5–9). Emission reduction of greenhouse gases from the cement industry. Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies, Vancouver, BC, Canada.

3. Mechanical properties of alkali-activated concrete: A state-of-the-art review;Ding;Constr. Build. Mater.,2016

4. Industrially interesting approaches to “low-CO2” cements;Gartner;Cem. Concr. Res.,2004

5. A comprehensive overview about the influence of different additives on the properties of alkali-activated slag—A guide for Civil Engineer;Rashad;Constr. Build. Mater.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3