Affiliation:
1. School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, China
2. State Key Laboratory of Environmental-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China
Abstract
Transition metal selenides have high theoretical capacities, making them attractive candidates for energy storage applications. Here, using the microwave-absorbing properties of the materials, we designed a simple and efficient microwave-assisted synthesis method to produce a composite made of nanospheres Ni0.5Co0.5Se2 (NCSe) and highly conductive, stable Ti3C2Tx MXene. The Ni0.5Co0.5Se2/Ti3C2Tx composites are characterized via scanning electron microscopy, X-ray diffraction, cyclic voltammetry, and electrochemical impedance spectroscopy. The findings indicate that 3D Ni0.5Co0.5Se2 bimetallic selenide nanospheres were uniformly loaded within the few-layer Ti3C2Tx MXene wrapper in a short period. The optimal NCSe/Ti3C2Tx−2 electrode can demonstrate a specific capacitance of 752.4 F g–1 at 1 A g–1. Furthermore, the asymmetric supercapacitor combined with activated carbon maintains a capacitance retention of 110% even after 5000 cycles. The method of directly growing active substances on few-layer Ti3C2Tx MXene will provide inspiration for the manufacture of high-pseudocapacitance supercapacitors.
Funder
Sichuan Province for Science and Technology Development
Outstanding Youth Science and Technology Talents Program of Sichuan
the Project of State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology