New Method for Photoactive Cement Preparation—Selected Mechanical Properties and Photocatalytic Activity of New Materials

Author:

Janus Magdalena1ORCID,Strzałkowski Jarosław1,Zając Kamila1,Kusiak-Nejman Ewelina2ORCID

Affiliation:

1. Faculty of Civil and Environmental Engineering, West Pomeranian University of Technology in Szczecin, al. Piastów 50, 70-311 Szczecin, Poland

2. Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, ul. Pułaskiego 10, 70-310 Szczecin, Poland

Abstract

In this study, a new method of obtaining photoactive cements is presented. The goal was to obtain photoactive cements using a method that could reduce the production costs. In the study, an intermediate product from the production of titanium dioxide using the sulfate method, taken from the installation before the calcination process, was used to obtain photoactive cements. Laboratory conditions corresponding to introducing this amorphous TiO2 into cement clinker during its cooling were simulated. The study shows that the temperature from 300 to 800 °C and the time of amorphous TiO2 contact with the cement clinker within 30 min is sufficient to obtain a photoactive cement. The highest photocatalytic activity was obtained for the material with 5 wt.% TiO2 content, and the method used did not cause a significant decrease in the bending and compressive strength of the new photoactive cements. The obtained materials were characterized by determining the crystal size of the TiO2, the sulfur content and the photocatalytic activity during NO decomposition under UV radiation. The bending and compressive strength were measured. The influence of the addition of photocatalysts on the beginning and end of the setting time was also investigated.

Funder

National Centre for Research and Development

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3