High-Temperature Cyclic Oxidation Behavior and Microstructure Evolution of W- and Ce-Containing 18Cr-Mo Type Ferritic Stainless Steel

Author:

Zheng Jiahao1ORCID,Feng Yang1,Zhao Yang2ORCID,Chen Liqing1

Affiliation:

1. State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China

2. School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China

Abstract

Due to the recurrent starting and stopping operations of automobiles during service, their engines’ hot ends are continually subjected to high-temperature cyclic oxidation. Therefore, it is crucial to develop ferritic stainless steels with better high-temperature oxidation resistance. This study focuses on improving the high-temperature cyclic oxidation performance of 18Cr-Mo (444-type) ferritic stainless steel by alloying with high-melting-point metal W and the rare earth element Ce. For this purpose, a high-temperature cyclic oxidation experiment was designed to simulate the actual service environment and investigate the high-temperature cyclic oxidation behavior and microstructure evolution of 444-type ferritic stainless steel alloyed with W and Ce. The oxide structure and composition formed during this process were analyzed and characterized using scanning electron microscopy/energy dispersive spectroscopy (SEM-EDS) and electron probe X-ray micro-analyzer (EPMA), in order to reveal the mechanism of action of W and Ce in the cyclic oxidation process. The results show that 18Cr-Mo ferritic stainless steel alloyed with W and Ce exhibits an excellent resistance to high-temperature cyclic oxidation. The element W can promote the precipitation of the Laves phase between the matrix and the oxide film, and the small-sized Laves phase can inhibit the interfacial diffusion of oxidation reaction elements and prevent the inward growth of the oxide film. The element Ce can refine oxide particles and reduce the thickness of the oxide film. CeO2 particles within the oxide film can serve as nucleation sites for the formation of oxide particles from reactive elements, and they also contribute to pinning the oxide film, thereby enhancing its adhesion.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3