Investigating the Emission of Hazardous Chemical Substances from Mashrabiya Used for Indoor Air Quality in Hot Desert Climate

Author:

Jung ChulohORCID,Al Qassimi Nahla

Abstract

Dubai has the reputation of a continuously growing city, with skyscrapers and mega residential projects. Many new residential projects with poor choices of material and ventilation have led to a faster rise in sick building syndrome (SBS) in Dubai than in any other country, and the IAQ (indoor air quality) has become more critical. Volatile organic compounds (VOCs) and formaldehyde (HCHO) affect the health of residents, producing the phenomenon known as SBS (sick building syndrome). It has been reported that wood materials used for furniture and wooden windows and doors are a significant source of indoor air pollution in new houses. This paper aims to identify the factor elements emitting harmful chemical substances, such as VOCs and HCHO, from wooden mashrabiya (traditional Arabic window) by examining the characteristics of the raw and surface materials through test pieces. As a methodology, a small chamber system was used to test the amount of hazardous chemicals generated for each test piece. For Total volatile organic compounds (TVOC) and HCHO, the blank concentration before the injection and the generation after seven days were measured. The results showed that to reduce TVOC, it is necessary to secure six months or more as a retention period for raw materials and surface materials. The longer the retention period, the smaller the TVOC emission amount. In the case of mashrabiya, an HCHO low-emitting adhesive and maintenance for one month or more are essential influencing factors. It was proven that using raw materials with a three-month or more retention period and surface materials with a one-month or more retention period is safe for indoor mashrabiya. This study is the first study in the Middle East to identify factors and characteristics that affect the emission of hazardous chemicals from wood composite materials, such as wood mashrabiya, that affect indoor air quality in residential projects in Dubai. It analyzes the correlation between emission levels and the retention period of raw and surface materials, in order to provide a new standard for indoor air pollutants.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3