Abstract
Disasters have been a major subject of research considering damages caused in terms of losses of lives and properties and the functionality of critical services in cities. Floods generate large amounts of waste, causing several functional deteriorations, such as disrupted transportation, water supply, and wastewater management. Hence, it is necessary to establish an effective plan to secure urban resilience during the disaster response and recovery phases. This study proposes a method to reduce overlaps between disaster waste transportation routes and other emergency response activities after floods in the response and recovery phases. The network analysis of a geographic information system was used to analyze the supplying routes of evacuation, rescue/aid, hospital transportation, and police services for each disaster phase to reduce the overlapping of routes. The results showed that by using the proposed method, the average length of the disaster waste transportation routes increased by 25.29% and 9.80% in the response and recovery phases, respectively, whereas the length of the sections overlapping with the routes providing critical services decreased by 47.49% and 55.57% in the response and recovery phases, respectively. We believe that the proposed method identifies new corresponding key issues to establish disaster waste management plans to secure urban resilience after a disaster.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献