Low-Latency Haptic Open Glove for Immersive Virtual Reality Interaction

Author:

Sim DonghyunORCID,Baek Yoonchul,Cho Minjeong,Park Sunghoon,Sagar A. S. M. Sharifuzzaman,Kim Hyung Seok

Abstract

Recent advancements in telecommunications and the tactile Internet have paved the way for studying human senses through haptic technology. Haptic technology enables tactile sensations and control using virtual reality (VR) over a network. Researchers are developing various haptic devices to allow for real-time tactile sensation, which can be used in various industries, telesurgery, and other mission-critical operations. One of the main criteria of such devices is extremely low latency, as low as 1 ms. Although researchers are attempting to develop haptic devices with low latency, there remains a need to improve latency and robustness to hand sizes. In this paper, a low-latency haptic open glove (LLHOG) based on a rotary position sensor and min-max scaling (MMS) filter is proposed to realize immersive VR interaction. The proposed device detects finger flexion/extension and adduction/abduction motions using two position sensors located in the metacarpophalangeal (MCP) joint. The sensor data are processed using an MMS filter to enable low latency and ensure high accuracy. Moreover, the MMS filter is used to process object handling control data to enable hand motion-tracking. Its performance is evaluated in terms of accuracy, latency, and robustness to finger length variations. We achieved a very low processing delay of 145.37 μs per finger and overall hand motion-tracking latency of 4 ms. Moreover, we tested the proposed glove with 10 subjects and achieved an average mean absolute error (MAE) of 3.091∘ for flexion/extension, and 2.068∘ for adduction/abduction. The proposed method is therefore superior to the existing methods in terms of the above factors for immersive VR interaction.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ASLRing: American Sign Language Recognition with Meta-Learning on Wearables;2024 IEEE/ACM Ninth International Conference on Internet-of-Things Design and Implementation (IoTDI);2024-05-13

2. A Novel Adaptive Framework for Immersive Learning Using VR in Education;Transforming Education with Virtual Reality;2024-02-02

3. A Systematic Review on Custom Data Gloves;IEEE Transactions on Human-Machine Systems;2024

4. Beyond 5G Multicast for XR Communications aided by Pre-computed Multi-beams and NOMA;2023 IEEE Globecom Workshops (GC Wkshps);2023-12-04

5. Design and Development of ExoGlove for Obtaining Human Hand Data;2023 IEEE International Conference on Robotics and Biomimetics (ROBIO);2023-12-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3