Abstract
The water-energy balance of many mid-latitude watersheds has been changing in recent decades due to global warming. These changes manifest themselves over both long timescales (e.g., hydrologic drought) and short timescales (e.g., agricultural drought) and may be ameliorated or exacerbated by vegetative response. We apply a Budyko framework to assess short-term response to long-term trends in water and heat stress (HS) across mid-latitude North America. Using high-resolution meteorological data and streamflow records, we calculate the frequency of HS every year since 1980 for every gaged watershed with adequate data (n = 1528). We find that HS has become more frequent in most watersheds in the western US, New England, and southeastern Canada. However, we find that HS has become less frequent in the Midwest and the relatively humid eastern US. By assessing the relationship between trends in HS frequency and proximate forcing variables (annual PPT, annual streamflow, minimum and maximum daily temperatures, actual evapotranspiration, and potential evapotranspiration), we find that these trends in HS frequency are primarily driven by meteorological forcings rather than vegetative response. Finally, we contextualize our findings within the Budyko framework, which assumes a landscape in equilibrium with its climate, with the implication that these trends in HS are only likely to be realized after local vegetation has adapted to new meteorological norms.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献