Abstract
The path from molecular to meteorological scales is traced and reviewed, beginning with the persistence of molecular velocity after collision induces symmetry breaking, from continuous translational to scale invariant, associated with the emergence of hydrodynamic behaviour in a Maxwellian (randomised) population undergoing an anisotropic flux. An empirically based formulation of entropy and Gibbs free energy is proposed and tested with observations of temperature, wind speed and ozone. These theoretical behaviours are then succeeded upscale by key results of statistical multifractal analysis of airborne observations on horizontal scales from 40 m to an Earth radius, and on vertical scales from the surface to 13 km. Radiative, photochemical and dynamical processes are then examined, with the intermittency of temperature implying significant consequences. Implications for vertical scaling of the horizontal wind are examined via the thermal wind and barometric equations. Experimental and observational tests are suggested for free running general circulation models, with the possibility of addressing the cold bias they still exhibit. The causal sequence underlying atmospheric turbulence is proposed.
Reference69 articles.
1. Invariante variationsprobleme;Noether,1918
2. On the theory of phase transformation I&II (in Russian);Landau,1965
3. An Approximate Quantum Theory of the Antiferromagnetic Ground State
4. Broken Symmetries and the Masses of Gauge Bosons
5. The Mathematical Theory of Non-Uniform Gases;Chapman,1970
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献